Tutorial: Your First DataHub Search¶
Learn how to search your DataHub catalog using an AI assistant.
Prerequisites:
- mcp-datahub installed (Installation Guide)
- Environment configured with DATAHUB_URL and DATAHUB_TOKEN
- Claude Desktop, Claude Code, or another MCP client
What You Will Learn¶
- How to perform basic searches
- How to filter by entity type
- How to explore search results
- How to get detailed entity information
Step 1: Verify Your Connection¶
Start your MCP client and verify mcp-datahub is connected.
Ask your AI assistant:
"List the available DataHub connections"
You should see a response showing your configured connection:
{
"connections": [
{
"name": "datahub",
"url": "https://your-datahub.example.com",
"is_default": true
}
]
}
If you see an error, check your configuration in the Troubleshooting Guide.
Step 2: Basic Search¶
Now perform your first search. Ask:
"Search DataHub for customer"
The AI will use the datahub_search tool and return results like:
{
"entities": [
{
"urn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,prod.sales.customers,PROD)",
"type": "DATASET",
"name": "customers",
"platform": "snowflake",
"description": "Customer master data including contact info and preferences"
},
{
"urn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,prod.sales.customer_orders,PROD)",
"type": "DATASET",
"name": "customer_orders",
"platform": "snowflake"
}
],
"total": 15
}
Understanding the Results
urn: The unique identifier for this entity in DataHubtype: The kind of entity (DATASET, DASHBOARD, etc.)name: The human-readable nameplatform: The data platform (Snowflake, BigQuery, etc.)description: Business description if availabletotal: Total matching results (may exceed returned count)
Step 3: Filter by Entity Type¶
Narrow your search to specific entity types. Ask:
"Search for customer dashboards in DataHub"
The AI will add an entity type filter:
{
"entities": [
{
"urn": "urn:li:dashboard:(looker,customer_360)",
"type": "DASHBOARD",
"name": "Customer 360 Dashboard",
"platform": "looker",
"description": "Unified view of customer metrics"
}
],
"total": 3
}
Available Entity Types
DATASET: Tables, views, filesDASHBOARD: BI dashboardsCHART: Individual visualizationsDATA_FLOW: Pipelines and workflowsDATA_JOB: Individual pipeline tasks
Step 4: Get Entity Details¶
Pick an entity from your search results and ask for details. Use the URN from the results:
"Get details for the customers dataset in DataHub"
Or be specific with the URN:
"Get the DataHub entity urn
dataset:(urn
dataPlatform:snowflake,prod.sales.customers,PROD)"
You will see detailed metadata:
{
"urn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,prod.sales.customers,PROD)",
"name": "customers",
"description": "Customer master data including contact info and preferences",
"platform": "snowflake",
"owners": [
{
"name": "Data Team",
"type": "DATAOWNER"
}
],
"tags": ["pii", "customer-data"],
"glossaryTerms": ["Customer", "PII"],
"domain": "Sales"
}
Step 5: Explore the Schema¶
For datasets, you can explore the schema. Ask:
"What fields are in the customers table?"
The AI uses datahub_get_schema:
{
"fields": [
{
"fieldPath": "customer_id",
"type": "NUMBER",
"description": "Unique customer identifier",
"nullable": false
},
{
"fieldPath": "email",
"type": "STRING",
"description": "Customer email address",
"nullable": true,
"glossaryTerms": ["PII", "Email"]
},
{
"fieldPath": "created_at",
"type": "TIMESTAMP",
"description": "Account creation timestamp"
}
]
}
Step 6: Paginate Results¶
For searches with many results, use pagination. Ask:
"Search for datasets in DataHub, show results 11-20"
The AI will use offset and limit parameters to paginate.
Practice Exercises¶
Try these searches on your own:
- Search for all datasets from a specific platform (e.g., "BigQuery datasets")
- Find dashboards related to "revenue" or "sales"
- Search for glossary terms containing "customer"
- Get the schema for a dataset you found
What You Learned¶
- Basic search with
datahub_search - Filtering by entity type
- Getting entity details with
datahub_get_entity - Exploring schemas with
datahub_get_schema - Understanding URNs and search results
Next Steps¶
- Exploring Data Lineage: Trace data dependencies
- Available Tools Reference: All tool documentation
- Understanding URNs: Deep dive into URN structure